C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Ring Theory

	Subject	Code : 4SC06RTC1	Branch: B.Sc.(Mathematics	5)	
	Semeste	er: 6 Date: 09/05/2016	Time : 02:30 To 05:30	Marks : 70	
	Instructi (1) (2) (3) (4)	ons: Use of Programmable calculator & Instructions written on main answ Draw neat diagrams and figures (Assume suitable data if needed.	& any other electronic instrument is pro ver book are strictly to be obeyed. if necessary) at right places.	hibited.	
Q-1		Attempt the following questio	ns:	(14)	
-	a)	Show that an integral domain co	ontains no idempotent except 0 or 1.	(02)	
	b)	Is $(\mathbb{Z}_{12}, +_{12}, \cdot_{12})$ an integral domain? Justify your answer. (
	c)	Show that \mathbb{Z} is not an ideal of \mathbb{Q} .			
	d)	Show that the mapping $\phi: (\mathbb{Z}(\sqrt{n}))$	$\overline{(2)}, +, \cdot) \rightarrow (\mathbb{Z}(\sqrt{2}), +, \cdot)$, where	(02)	
		$\phi(a) = m - n\sqrt{2}, a \in m + n\sqrt{2}$	$\overline{2} \in \mathbb{Z}(\sqrt{2})$ is a ring homomorphism.		
	e)	Show that for nonzero polynom	nials f and $q \in D[x]$, $0 < [f] < [fq]$.	(02)	
	f)	Show that the polynomial x^2 –	2 has no zero in \mathbb{Q} . Is it has zero in \mathbb{R} ?	Justify. (02)	
	g)	Is \mathbb{Z}_{331} a field? Justify your ans	wer.	(02)	
Atte	empt any	four questions from Q-2 to Q-8			
Q-2		Attempt all questions		(14)	
•	a)	Obtain the g.c.d. of two polynomial	mials $f(x) = 6x^3 + 5x^2 - 2x + 25$ an	d (06)	
		$g(x) = 2x^2 - 3x + 5 \in \mathbb{R}[x]$	and express it in the form $a(x)f(x) + b$	p(x)g(x).	
	b)	Define characteristic of a ring. S domain <i>D</i> is <i>p</i> , then prove that	Show that if the characteristic of an inte $(a + b)^p = a^p + b^p$, $a, b \in D$.	gral (06)	
	c)	Show that $I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} / a, b \in \right\}$	\mathbb{Z} is not an right ideal of $M_2(\mathbb{Z})$.	(02)	
Q-3	5	Attempt all questions		(14)	
	a)	Define monic integer polynomi	al. Obtain all rational solutions of polyn	iomial (06)	
		$f(x) = 4x^5 + x^3 + x^2 - 3x + x^3 + x$	1.		
	b)	Show that every field is an integ	gral domain. Is converse true? Justify yo	our (06)	
	`	answer.			
	c)	For $f(x), g(x), h(x) \in F[x]$ with $f(x) \in F[x]$ for $f(x), g(x), h(x) \in F[x]$	f(x) / g(x)n(x) and g.c.d. of $f(x)$	and $g(x)$ (02)	
			•		

Page 1 || 2

Q-4		Attempt all questions	(14)
	a)	Check whether the set $\{a + b\sqrt{2}/a, b \in \mathbb{Z}\}$ is a ring under usual addition and	(06)
		multiplication or not.	
	b)	If $r(I) = \{x \in R / x : u = 0; \forall u \in I\}$, where <i>I</i> is an ideal of ring <i>R</i> , then prove that	(06)
	r(I) is an ideal of ring R.		
	c)	Show that $f(x) = x^3 + x^2 + 1$ is irreducible over \mathbb{Z}_2 .	(02)
Q-5		Attempt all questions	(14)
	a) State and prove Eisenstein's criterion.		(06)
	b) For any prime p, show that $(\mathbb{Z}_p, +_p, \cdot_p)$ is a field.		
	c) If $\phi: R \to R'$ is a homomorphism then show that		
$(i)\phi(0) = 0',$		$(i)\phi(0) = 0^{'},$	
		$(ii)\phi(-a) = -\phi(a).$	
Q-6		Attempt all questions	(14)
	a)	If $\phi: R \to R$ is a homomorphism then prove kernel of ϕ is an ideal of R. Find	(06)
		kernel of ϕ , where $\phi: (\mathbb{Z}, +, \cdot) \to (\mathbb{Z}_2, +_2, \cdot_2)$ defined as	
		$\phi(x) = \begin{cases} 0, x \text{ is even} \\ 1, y \text{ is odd} \end{cases}$	
	h)	Define field. If F is a field then show that F has only two ideals $\{0\}$ and F itself	(06)
	с)	Check whether $q(x) = x + 1 \in \mathbb{R}[x]$ is a factor of $f(x) = 2x^3 + x + 3 \in \mathbb{R}[x]$	(00)
	C)	or not.	(02)
0-7		Attempt all questions	(14)
C	a)	If $\phi: R \to R'$ is an onto homomorphism with kernel U then prove that	(06)
$R / U \cong R'.$		$R / U \cong R'$.	
	b)	Show that the polynomial $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ is irreducible	(06)
		over Q.	
	c)	If I is an ideal of a ring R and $1 \in I$ then prove that $I = R$.	(02)
Q-8		Attempt all questions	(14)
	a)	State and prove division algorithm for polynomials.	(06)
	b)	Prove that characteristic of an integral domain D is either '0' or prime.	(06)
	c)	Consider the ideal $I = 7\mathbb{Z}$ in the ring $(\mathbb{Z}, +, \cdot)$. If A is any ideal of \mathbb{Z} with $I \subset A$	(02)
		then either $A = I$ or $A = \mathbb{Z}$.	

Page 2 || 2

